

Welcome to gpwm’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

Index

 # Cloudformation Stacks

Cloudformation stacks looks very similar to AWS CLI’s –cli-input-json file, but has the ability to:

	Reference a template with a path

	Feed the templates with richer data structures as parameters

Because these parameters can be lists or dictionaries, creating reusable
master templates where we the number of resources aren’t known in advance
is quite simple (and also easy to read).

Pre-requisites

The only pre-requisite is the python AWS SDK (Boto3) and jmespath.
Both are automatically installed with the the tool.

Authentication

Authentication against AWS is done by configuring Boto or the AWS CLI (which
uses Boto). The easiest way is to create a default CLI/boto profile with the
AWS CLI (which pretty much everyone already has installed):

`
$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]: ENTER
`

If the AWS CLI isn’t available, any of these options defined in the [Boto
configuration page](http://boto3.readthedocs.io/en/latest/guide/configuration.html)
will work.

Stacks

Stacks represent a clouformation Stack, with input values, or Parameters that can be passed to a
consumable, which is the equivalent to a CFN template.

As mentioned in other places, stacks with .mako, and .jinja extensions get
first rendered via mako or jinja templating engines respectively, then the
all the parameters defined in the Parameters section of the stack, and some
functions “exported” as template enginet variables to the consumable defined by
the file name (or url) in the TemplateBody key. The consumable in its turn is
also rendered with the templating engine based on the file extension of the
consumable (.mako, or .jinja). The rendered string of the whole consumable is
set as the stack’s TemplateBody as per CFN’s API requirement.

Mako - subnet.mako
```
##
## Owner: networking
##
<%


stack_type = “subnet”
team = “consulting”
environment = “prd”




%>
StackName: ${stack_type}-${team}-${environment}
TemplateBody: templates/${stack_type}.mako
Parameters:


team: ${team}
environment: ${environment}
vpc_stack: vpc-${team}-${environment}
subnets:



	zone: ELB
cidr: 10.0.1.0/24
space: public
az: a
map_public_ip: “true”


	zone: app
cidr: 10.0.2.0/24
space: private
az: a


	zone: data
cidr: 10.0.3.0/28
space: private
az: a


	zone: data
cidr: 10.0.3.16/28
space: private
az: b











	Tags:

	team: ${team}
environment: ${environment}
type: ${stack_type}





```

Jinja - subnet.jinja
```
##
## Owner: networking
##

{% set stack_type = “subnet” %}
{% set team = “consulting” %}
{% set environment = “prd” %}
StackName: {{stack_type}}-{{team}-{{environment}}
TemplateBody: templates/{{stack_type}}.mako
Parameters:


team: {{team}}
environment: {{environment}}
vpc_stack: vpc-{{team}}-{{environment}}
subnets:



	zone: ELB
cidr: 10.0.1.0/24
space: public
az: a
map_public_ip: “true”


	zone: app
cidr: 10.0.2.0/24
space: private
az: a


	zone: data
cidr: 10.0.3.0/28
space: private
az: a


	zone: data
cidr: 10.0.3.16/28
space: private
az: b











	Tags:

	team: {{team}}
environment: {{environment}}
type: {{stack_type}}





```

Stacks can also pull templates from S3 buckets or webservers:

```
##
## Owner: networking
##
StackName: vpc-training-dev
TemplateBody: s3://training-island-dev-srcd-io/gus-test/vpc.mako?SSECustomerKey=abcdefghijklmnopqrstuvwxyz123456&SSECustomerAlgorithm=AES256
Parameters:


team: training
environment: dev
cidr: 10.0.0.0/16
nat_availability_zones:



	{“name”: “a”, “cidr”: “10.0.0.0/28”}


	{“name”: “b”, “cidr”: “10.0.0.16/28”}











	Tags:

	team: training
environment: dev
type: vpc





```

Consumables

After processing, a consumable must be 100% clouformation-compatible templates.

In short, consumables are CFN templates that have these main extra features:

	Ability to be rendered with a higher level text templating engine (mako only one supported now).

	Extra yaml tags (!Cloudformation and !AWS) that makes queries to the appropriate API and replace them with results from those calls.

	Extra helper functions that, as the extra yaml tags, allows for querying data
in AWS

	Automatic creation of CF outputs for every resource present in the template.

Example Template
```
##
## Owner: networking
##
## Dependencies:
##   - vpc
##
## Parameters:
##   - team (required): The team owning the stack
##   - environment (required): The environment where the stack is running on (dev, prod, etc)
##   - subnets (required): A list of subnet dictionaries defined by:
##     - az (required): The availability zone for the subnet
##     - cidr (required): The CIDR for the subnet
##     - space (required): “public” or “private”. Defines if the subnet is attached to a
##       public or private route table
##     - zone (required): The name for the isolation zone for the subnet. It should be the
##       service name, but it doesn’t have to in cases where multiple services share
##       the same subnet
##
<%


vpc_stack = “vpc-{}-{}”.format(team, environment)




%>
AWSTemplateFormatVersion: “2010-09-09”
Description: Subnet stack for ${team}-${environment}
Resources:
% for subnet in subnets:
<%



	subnet_resource_name = “{}{}AZ{}”.format(

	subnet[“zone”].capitalize(),
subnet[“space”].capitalize(),
subnet[“az”]





)
if subnet[“space”] == “private”:


route_table_output = “RouteTablePrivateAZ{}”.format(subnet[“az”])





	else:

	route_table_output = “RouteTablePublic”








%>



	Subnet${subnet_resource_name}:

	Type: “AWS::EC2::Subnet”
Properties:


VpcId: !Cloudformation {stack: ${vpc_stack}, output: VPC}
CidrBlock: ${subnet[“cidr”]}
AvailabilityZone: {“Fn::Sub”: “<%text>$</%text>{AWS::Region}${subnet[‘az’]}”}
MapPublicIpOnLaunch: ${subnet.get(“map_public_ip”, “false”)}
Tags:



	{Key: team, Value: ${team}}


	{Key: environment, Value: ${environment}}


	{Key: space, Value: ${subnet[“space”]}}


	{Key: Name, Value: ${team}-${environment}-${subnet[“zone”]}-${subnet[“space”]}-${subnet[“az”]}}












	RouteTableAssociation${subnet_resource_name}:

	Type: “AWS::EC2::SubnetRouteTableAssociation”
Properties:


SubnetId: {Ref: Subnet${subnet_resource_name}}
RouteTableId: !Cloudformation {stack: ${vpc_stack}, output: ${route_table_output}}











%endfor
```

Change sets

When making updates to stacks, sometimes it’s useful to know what actual changes to
resources will be made. For this, the script supports CFN change sets. The
usual use-case for this is interactive, non-pipeline changes, not fully
automated pipeline-based updates.

The way it works is simple. Add a “-r” option to the “update” action:

```
python gpwm.py update stacks/network/vpc-demo-dev.yaml -r
———- Change Set ———-
Capabilities: []
ChangeSetId:
arn:aws:cloudformation:us-west-2:329193457145:changeSet/vpc-demo-dev-1/c776d600-0f54-4436-ad78-58693091c97e
ChangeSetName: vpc-demo-dev-1
Changes:
- ResourceChange:



Action: Remove
Details: []
LogicalResourceId: DHCPOptions
PhysicalResourceId: dopt-ba9f98dd
ResourceType: AWS::EC2::DHCPOptions
Scope: []




Type: Resource




CreationTime: 2017-07-18 00:43:54.803000+00:00
ExecutionStatus: AVAILABLE
NotificationARNs: []
StackId:
arn:aws:cloudformation:us-west-2:329193457145:stack/vpc-demo-dev/af6631f0-6759-11e7-8760-50a68d01a68d
StackName: vpc-demo-dev
Status: CREATE_COMPLETE
Tags:
- {Key: environment, Value: dev}
- {Key: build_id, Value: ‘1’}
- {Key: team, Value: demo}
- {Key: type, Value: vpc}

Execute(e), Delete (d), or Keep(k) change set?k
Changeset vpc-demo-dev-1 unchanged. No changes made to stack vpc-demo-dev
```

In the example above the user first made a mistake and chose an invalid option, but later
choose to keep the changeset to be dealt with later (option “k”) maybe via the AWS UI.

The user could have executed the changeset if he/she agreed with the changes
(option “e”), or deleted it without any changes to the resources if changes were not good (option “d”).

Extra yaml tags:

These extra tags make the process of referencing resources in different stacks
very simple, and when more providers are supported, we will be able to query
resources in one cloud provider and feed to stacks in other providers.

!Cloudformation

It takes a dictionary with “stack” and either “output” or “resource_id” keys as
arguments. It returns the value of the output or the physical resource_id for
that CF stack. Very simple way o
f doing stack references without having to tie different pieces of
infrastructure together with “Import”.
`
VPC: !Cloudformation {stack: my-vpc-stack, output: VpcId}
VPC: !Cloudformation {stack: my-vpc-stack, resource_id: VPC}
`
Sometimes we need to do further processing of the value returned. So, instead
of using the !Cloudformation tag, we can just use the underlying functions
get_aws_stack_output() or get_aws_stack_resource() to get the output or

the physical resource_id values:


```
<%


# “my.subdomain.company.com” into “my-subdomain-company-com”
hostedzone = get_aws_stack_output(common_stack, “Hostezone”)
s3_bucket = “-“.join(hostedzone.split(“.”))




%>
S3Bucket: ${s3_bucket}
```

!AWS
It takes a dictionary with the keys “service”, “action”, “arguments”, and
“result_filter” as tag arguments.
This tag makes a call to ANY AWS service with any argument wanted and
filters the result with a JMESPATH query, if needed.
This is very powerful because not every resource can be created with
Cloudformation, eg when AWS releases a new service or feature, it can take
months or years for them to be available withi
n Cloudformation. The arguments to !AWS are standard
[botocore](https://botocore.readthedocs.io/en/latest/index.html) entities:

	service (required): The AWS service such as ec2, s3, reoute53,
kinesis, etc.

	action (required): The botocore method for the service. eg
describe_instances, get_hosted_zone, etc

	arguments (optional, but usually required by the action): A
dictionary/hashmap of the arguments provided to the action, eg *{Filters:

[{Name: “tag:team”, Values: [accounting]}]}*, {Id: my
-domain.com}
* result_filter (optional): A [JMESPATH](http://jmespath.org) query string that

locally filters result of the API call

Examples:
```
VPC: !AWS {service: ec2, action: describe_vpcs, arguments: {Filters: [{Name:
cidr, Values: [10.0.0.0/16]}]}, result_filter: “Vpcs[].VpcId”}

HostedZoneId: !AWS {service: route53, action: list_hosted_zones_by_name,
arguments: {DNSName: abc.com}, result_filter: “HostedZones[0].Id”}
```

Similarly to the !Cloudformation tag, the underlying function (call_aws())
for the !AWS tag can also be used:
```
<%



	vpcs = call_aws(

	service=”ec2”,
action=”describe_vpcs”,
arguments={“Filters”: [{“Name”: “tag:sometag”, “Values”:









	[“somevalue”]}]},

	
result_filter=”Vpcs[].VpcId”




)
for vpc in the vpcs:


do_something_with_vpc()









%>

### !SSM
It takes a dictionary with the keys “Name” and “WithDecryption” as arguments, per
[get_parameter()](http://boto3.readthedocs.io/en/latest/reference/services/ssm.html#SSM.Client.get_parameter)
method of Boto’s SSM client.
This tag returns the value of a parameter from the AWS Simple System Manager
(SSM) Parameter Store, and is specially useful to retrieve secrets
(passwords/keys) from SSM’s parameter store so they are not kept plaintext in
git or any other SCM of choice.
Naturally, plain text parameters can also be retrieved, thus the argument
“WithDecryption” is optional, but must be specified when retrieving
encrypted parameters.

Examples:
```
Password: !SSM {Name: my-password, WithDecryption: true}

PlainTextParam: !SSM {Name: /some/useful/param}
```

This tag uses call_aws() as underlying function, so if the parameter is
needed inside a python block, something like this should be done:

```
<%

	password = call_aws(

	service=”ssm”,
action=”get_parameter”,
arguments={Name=”my-password”, WithDecryption: true}

)[“Parameter”][“Value”]

%>

 # Azure Stacks

Azure stacks (or ARM deployments) work very similar to AWS Cloudformation,
except by the fact that deployment must be placed in an existing Resource
Group. But Azure Resource Groups themselves cannot be described or managed
via ARM, so they’re descibed/managed via the stack itself.

Pre-requisites

At this point, these tools are needed:

	Azure CLI: `pip install azure-cli`

	azure Python SDK: `pip install azure`

But by using `pip install -r requirements/pip-install.txt` all dependencies
for all cloud providers will be installed. Or if you’re developing the tool,
use the Makefile - see the [development page](docs/development.md).

Authentication

This is an annoying topic. There are several way to authenticate against Azure
Cloud, and depending on what we want to do, or how the Azure account is setup,
some of these methods might not work, for example some of these don’t work with
multi-factor auth. To make it easier for the use to both test and use this tool
in production, as of this writing all authentication methods supported:

	Service principal via environment variables

	Service principal via auth file

	CLI profile

If multiple authentication methods are setup, the method in chosen based on the
order above.

This is a description of the authentication methods:

Authenticating using Service Principal Environment Variables

Similar method as Service Principal above, but no need to rely on a file if
your auth info can be obtained dynamically. These environment variables must be
set:

	AZURE_CLIENT_ID: The UUID of the service principal

	AZURE_CLIENT_SECRET: The secret the service principal uses to autenticate

	AZURE_TENANT_ID: The UUID of the tenant

	AZURE_SUBSCRIPTION: Either the UUID of the subscription, or its name

For example:

```
az ad sp create-for-rbac -n myPipeline –sdk-auth
export AZURE_CLIENT_ID=3b433e78-cac0-4a23-cd8b-34c5b45ce51a
export AZURE_CLIENT_SECRET=b8b467d0-cef4-4b8f-a573-76537148c7d
export AZURE_TENANT_ID=e6358ac9-aacf-33fc-9ee4-cf93fbfe5d68
export AZURE_SUBSCRIPTION=0432b1d0-5e2e-4e2a-ad73-e33d0652e5b2

# Or using the subscription name
export AZURE_SUBSCRIPTION=dev-subscription
```

Notice that unlike AWS, these environment variables aren’t honoured anywhere in
the Azure SDK, but they are used in some of their code examples, so this tool
is using the same variable names to make it familiar for people that have been
playing with Azure’s example code.

For reference:

	https://github.com/AzureAD/azure-activedirectory-library-for-python

	https://azure.microsoft.com/en-us/resources/samples/resource-manager-python-template-deployment/

	https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest

Autheticating With a Service Principal Auth File

This method uses a service principal, which is fancy wording for a
service user, instead of your own account. To set it up, just set the path to
the profile in the AZURE_AUTH_LOCATION environment variable. For example:

`
az ad sp create-for-rbac -n myPipeline --sdk-auth > ~/.azure/myPipelineProfile.json
export AZURE_AUTH_LOCATION=~/.azure/myPipelineProfile.json
`

This variable is honoured by the Azure SDKs (at least Python and .NET)

For further reference on this auth method:

	https://github.com/MicrosoftDocs/azure-docs-sdk-python/blob/master/docs-ref-conceptual/python-sdk-azure-authenticate.md

	https://github.com/Azure/azure-sdk-for-python/blob/master/azure-common/azure/common/client_factory.py#L134

Authenticating With a CLI Profile

This is the simplest of the methods. To set it up, just do a CLI login:

`
azure login
`

In a nutshell, this method sets up an Azure auth profile in
~/azure/azureProfile, and is most suitable for users that are testing with
their own credentials. Avoid using this method in production.

For further reference on this auth method:

	https://github.com/AzureAD/azure-activedirectory-library-for-python

	https://docs.microsoft.com/en-us/python/azure/python-sdk-azure-get-started?view=azure-python#step-2

Azure Deployment Examples

Similarly to GCP, Azure APIs, SDKs, CLI and documentation aren’t as good and
concise as AWS’, so we made the choice of using the naming standard of the Azure
API/AEM for the stack/deployment DSL configuration, not the CLI or python SDK
naming. So, the YAML keys representing an ARM deployment is lowerCamelCased

Mako - storage-account.mako

```
<%


team = “accounting”
environment = “dev”
service = “web”




%>

name: ${team}-${environment}-${service}
type: azure
resourceGroup:


name: ${team}-${environment}-${service}-rg
location: East US
tags:


team: ${team}
environment: ${environment}
service: ${service}




persist: false




template: examples/consumables/azure/storage-account.mako
parameters:


team: ${team}
environment: ${environment}
service: ${service}




mode: Incremental
```

Jinja - storage-account.jinja

```
{% set team = “accounting” %}
{% environment = “dev” %}
{% service = “web” %}

name: {{team}}-{{environment}}-{{service}}
type: azure
resourceGroup:


name: {{team}}-{{environment}}-{{service}}-rg
location: East US
tags:


team: {{team}}
environment: {{environment}}
service: {{service}}




persist: false




template: examples/consumables/azure/storage-account.jinja
parameters:


team: {{team}}
environment: {{environment}}
service: {{service}}




mode: Incremental
```

The deployment documents above are roughly equivalent to:

```
# Using GPWM
gpwm create path/to/storage-account.mako

# Using the Azure CLIa - obviously you don’t get the goodies this way
az group create 


-g accounting-dev-web-rg –location eastus –tags team=accounting environment=dev service=web





	az group deployment create 

	-g accounting-dev-web-rg -n accounting-dev-web –mode Incremental –template-file examples/consumables/azure/storage-account.json –parameters team=accounting environment=dev service=web





```

Extra YMAL Tags:

These extra tags make the process of referencing resources in different stacks
very simple, and when more providers are supported, we will be able to query
resources in one cloud provider and feed to stacks in other providers.

!ARM

It take a dict with “deployment”, “resource-group”, and “output” as hash keys.
It returns the value of the output for that particular ARM deployment.

`
vm: !ARM {resource-group: ${my_rg}, deployment: ${my_stack}, output: vmName}
`

The underlying function get_azure_stack_output() can also be used for further
processing of the output value, in mako or jinja:
```
<%



	vm = utils.get_azure_stack_output(

	deployment=”my_deployment”,
resource_group=”my_resource_group”,
output=”vm_name”





)




%>
my-vm-name: ${vm}
```


 # Development

Prerequisites

Cygwin

	python3.6

	python3.6-devel

	libffi-devel

	openssl-devel

Development environment setup

The local development environment can be setup with [venv](https://docs.python.org/3/library/venv.html),
which is included with python3 and deprecades the 3rd party package
virtualenv.

If pyvenv is used:
`
make venv
source venv/bin/activate
make develop
`

To stop and delete your venv:
`
deactivate
make clean-venv (or make clean-all)
`

If the system-wide python installation is used, ie pyvenv is not used:
`
make develop
`

Directory Structure

This project adopts the src/package directory structure explained
[here](https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure),
and [here](https://docs.pytest.org/en/latest/goodpractices.html#tests-outside-application-code).

```
.
├── docs
│   ├── aws.md
│   ├── development.md
│   ├── emu.png
│   ├── gcp.md
│   ├── gpwm.jpg
│   └── shell.md
├── env
├── examples
│   ├── consumables
│   │   ├── account
│   │   │   └── common.mako
│   │   ├── application
│   │   │   ├── autoscaling.mako
│   │   │   └── rds.mako
│   │   ├── network
│   │   │   ├── securitygroup.mako
│   │   │   ├── subnet.mako
│   │   │   └── vpc.mako
│   │   └── security
│   │       └── accesspolicy.mako
│   └── stacks
│       ├── aws
│       │   ├── account
│       │   │   └── common.mako
│       │   ├── network
│       │   │   ├── citrix-demo-dev.mako
│       │   │   ├── securitygroup-demo-dev.yaml
│       │   │   ├── subnet-demo-dev.mako
│       │   │   ├── vpc-demo-dev.mako
│       │   │   └── vpc-demo-dev.yaml
│       │   └── security
│       │       └── accesspolicy-demo-dev-jira.yaml
│       └── gcp
│           ├── ox.txt
│           ├── vm1.mako
│           └── vm.yaml
├── Makefile
├── README.md
├── requirements
│   ├── deb-build.txt
│   ├── deb-install.txt
│   ├── pip-install.txt
│   └── pip-test.txt
├── setup.cfg
├── setup.py
├── src
│   └── gpwm
│       ├── cli.py
│       ├── __init__.py
│       ├── stacks
│       │   ├── aws.py
│       │   ├── gcp.py
│       │   ├── __init__.py
│       │   └── shell.py
│       └── utils.py
└── tests


├── conftest.py




```

Dependencies

Python doesn’t have a really good, unified way of resolving package
dependencies. Setuptool has a lot of problems with dependency resolution,
especially the fact that it tries to download source and build dependencies
instead of just installing the wheels.

Plus, rarely a piece of software has python-only dependencies. A pip package
always depend on a pre-installed deb or rpm that’s not python
related. And on top of that, python packages have at least two sets internal
dependencies:
* one set of dependencies for testing/building
* one set of depencies for installation/deployment

Because of that, the widely used requirements.txt has been expanded.

The repository has a requirements directory with:
`
requirements/
|-- pip-install.txt
|-- pip-test.txt
|-- deb-build.txt
|-- deb-install.txt
|-- rpm-build.txt
|-- rpm-install.txt
`

	The file pip-install.txt lists the package dependencies for installation, in

a way very similar to setuptools’ install_requires.
* The file pip-test.txt lists package dependencies for testing, since normally
testing packages are not needed in “production”.
* The file deb-build.txt lists debian packages needed for
building/testing the application and normally should not be installed in
“production”.
* The file deb-install.txt lists debian packages that are needed to
run the application.
* The file rpm-build.txt lists rpm packages needed for
building/testing the application and normally should not be installed in
“production”.
* The file rpm-install.txt lists rpm packages that are needed to
run the application.

Testing

	Testing is being done with pytest.

	Code coverage checks is done with coverage package, invoked with pytest.

If coverage is below 80%, checks are set to fail.
* Code style checks are with both flake8, and pylint.

This is how tests are executed:
`
make test
`

Building

	The build process results in a [wheel](http://wheel.readthedocs.io/en/latest/)

	package being created:

`
make dist
`

Installing

installs the [wheel](http://wheel.readthedocs.io/en/latest/) package from a
build in the system python path or inside the venv (if activated)
`
make install
`

Cleaning up

To clean local python cached pyo/pyc files, build, dist, eggs, etc:
`
make clean
`

To stop and delete your venv:
`
deactivate
make clean-venv (or make clean-all)
`

To clean all the above:
`
deactivate
make clean-all
`

 # GCP Stacks

GCP stacks (or deployments configurations) look very similar to gcloud’s
configurations for Deployment Manager.

GCP’s APIs, SDKs, and the command line tool (gcloud) are a very messy bag of
cats, but a lot of the design choices GCP made closely mirror the ones this
tool made for AWS, with the caviat that GCP DM doesn’t support one major
piece of functionality: Cross stack/deployment references

Because the parameter mapping for the GCP DM API look so different from
gcloud’s, the choice was made to follow gcloud’s configuration, which at
least has a bit of documentation and examples avalailable, unlike DM’s API.

All parameters for gcloud’s DM configuration are supported by this tool, with
the addition of:

	name (supported by API, not gcloud)

	description (supported by API, not gcloud)

	labels (supported by API, not gcloud)

	project (supported by APY, not gcloud)

	stack_type (required by this tool)

Pre-requisites

The GCP SDK setup is a bit more complex than AWS’. These tools are needed:

	gcloud: OS specific package manager https://cloud.google.com/sdk/

	google cloud python SDK: `pip install google-cloud`

	google API python SDK: `pip install google-api-python-client`

But by using `pip install -r requirements/pip-install.txt` all dependencies
for all cloud providers will be installed. Or if you’re developing the tool,
use the Makefile - see the [development page](docs/development.md).

Authentication

follow the instructions
[here](https://developers.google.com/identity/protocols/application-default-credentials)

`
gcloud auth application-default login
`

GCP Deployment Examples

Mako - instance.mako
```
<%


project = “dev-island”
dependent_stack = “gus-test-deployment”




%>
stack_type: gcp
name: gus-test-deployment-1
description: Gus test stack 1
project: ${project}
imports:



	path: some_template.jinja







resources:
- type: compute.v1.instance


name: gus-test-1
properties:


zone: us-west1-a
machineType: https://www.googleapis.com/compute/v1/projects/dev-island/zones/us-west1-a/machineTypes/f1-micro
disks:
- deviceName: boot


type: PERSISTENT
boot: true
autoDelete: true
initializeParams:


sourceImage: https://www.googleapis.com/compute/v1/projects/debian-cloud/global/images/debian-8-jessie-v20160301







networkInterfaces:
- network: https://www.googleapis.com/compute/v1/projects/dev-island/global/networks/default


accessConfigs:
- name: External NAT


type: ONE_TO_ONE_NAT














	outputs:

	
	name: instance_id
value: $(ref.gus-test-1.name)


	name: some-output
value: !GCPDM {deployment: ${dependent_stack}, output: instance_id, project: ${project}}








```

Jinja - instance.jinja

```
{% set project = “dev-island” %}
{% set dependent_stack = “gus-test-deployment” %}

stack_type: gcp
name: gus-test-deployment-1
description: Gus test stack 1
project: {{project}}
imports:



	path: some_template.jinja







resources:
- type: compute.v1.instance


name: gus-test-1
properties:


zone: us-west1-a
machineType: https://www.googleapis.com/compute/v1/projects/dev-island/zones/us-west1-a/machineTypes/f1-micro
disks:
- deviceName: boot


type: PERSISTENT
boot: true
autoDelete: true
initializeParams:


sourceImage: https://www.googleapis.com/compute/v1/projects/debian-cloud/global/images/debian-8-jessie-v20160301







networkInterfaces:
- network: https://www.googleapis.com/compute/v1/projects/dev-island/global/networks/default


accessConfigs:
- name: External NAT


type: ONE_TO_ONE_NAT














	outputs:

	
	name: instance_id
value: $(ref.gus-test-1.name)


	name: some-output
value: !GCPDM {deployment: {{dependent_stack}}, output: instance_id, project: {{project}}}








```

Extra yaml tags:

These extra tags make the process of referencing resources in different stacks
very simple, and when more providers are supported, we will be able to query
resources in one cloud provider and feed to stacks in other providers.

!GCPDM

It take a dict with “deployment”, “output”, and “project” key as arguments. It returns the value of the output for that particular GCP deployment.

`
instance: !GCPDM {deployment: ${my_other_stack}, output: instance_id, project: dev-island}
`

The underlying function get_stack_output() can also be used for further processing of the value:
```
<%


instance = get_stack_output(“my-deployment”, “instance_id”, provider=”gcp”, project=”my-project”)
team = instance.split(“-“)[0]




%>
my-team: ${team}
```


gpwm.stacks package

Submodules

gpwm.stacks.aws module

gpwm.stacks.azure module

gpwm.stacks.gcp module

gpwm.stacks.shell module

Module contents

gpwm package

Subpackages

	gpwm.stacks package
	Submodules

	gpwm.stacks.aws module

	gpwm.stacks.azure module

	gpwm.stacks.gcp module

	gpwm.stacks.shell module

	Module contents

Submodules

gpwm.cli module

gpwm.renderers module

gpwm.sessions module

gpwm.utils module

Module contents

gpwm

	gpwm package
	Subpackages
	gpwm.stacks package
	Submodules

	gpwm.stacks.aws module

	gpwm.stacks.azure module

	gpwm.stacks.gcp module

	gpwm.stacks.shell module

	Module contents

	Submodules

	gpwm.cli module

	gpwm.renderers module

	gpwm.sessions module

	gpwm.utils module

	Module contents

 # Shell Stacks

Shell stacks exist to fill the gaps where the declarative approach won’t suffice:

	Orchestrating deployments in multiple cloud provides

	Managing resources not yet available in the provider’s resource manager

	Running non cloud specific commands, for example setting up a dev environment

These shell stacks work by providing commands and environment variables for
each specific action (Create/Delete/Update)

To use Shell Stacks:

	Set “StackType” to “Shell” (if not defined, it assumes Cloudformation type)

	Set which shell to use (defaults to /bin/bash)

	Define the Environment variables which will be used by all Actions

	
	Define what “Actions” the stack supports (Create/Update/Delete)

	
	Define action-specific Environment variables

	Specify what commands to execute for each action

Notes

	At least one Action must be specified, but no need to define them all

	
	The environment variables are merged from least to most specific:

	
	“Commands” in a shell stack will inherit any predefined environment
variables, which is handy when using variables such as AWS_DEFAULT_PROFILE,
AWS_ACCESS_KEY, etc.

	The stack-wide enviroment variables do override the predefined ones from
the environment.

	The action-specific environment variables always win.

	If “Commands” is a list instead of a string, no shell is used (so no fancy shell expansions)

	Multiple commands can be specified by using a multiline string in YAML (see example below)

	The extra YAML tags provided by this tools are also available to shell stacks

Example - Shell Stacks

```
## This stack creates a KMS alias and associates it with an existing key.
## It also deletes the alias.
<%


role = “myrole”




%>

StackType: Shell
Shell: /bin/bash
Environment:


AWS_DEFAULT_REGION: us-west-2
KMS_KEY: !Cloudformation {stack: my-kms-stack, output: ApplicationKey}





	Actions:

	
	Create:

	
	Environment:

	KMS_KEY: !Cloudformation {stack: kms-stack, output: key_arn}



	Commands: |

	echo creating KMS Alias
aws kms list-aliases –query “Aliases[*].[AliasName]” –output text | grep “alias/${role}” || aws kms create-alias –alias-name alias/${role} –target-key-id $KMS_KEY







	Delete:

	
	Commands: |

	aws kms list-aliases –query “Aliases[*].[AliasName]” –output text | grep “alias/${role}” && aws kms delete-alias –alias-name alias/${role}













```


 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to gpwm’s documentation!

_static/up.png

_static/up-pressed.png

